Electrical defects of the transverse‐axial tubular system in cardiac diseases
نویسندگان
چکیده
Electrical excitability is an essential feature of cardiomyocytes and the homogenous propagation of the action potential is guaranteed by a complex network of membrane invaginations called the transverse-axial tubular system (TATS). TATS structural remodelling is a hallmark of cardiac diseases and we demonstrated that this can be accompanied by electrical defects at single T-tubular level. Using a random-access multi-photon (RAMP) microscope, we found that pathological T-tubules can fail to conduct action potentials, which delays local Ca2+ release. Although the underlying causes for T-tubular electrical failure are still unknown, our findings suggest that they are likely to be related to local ultrastructural alterations. Here, we first review the experimental approach that allowed us to observe and dissect the consequences of TATS electrical dysfunction and then propose two different strategies to unveil the reasons for T-tubular electrical failures. The first strategy consists in a correlative approach, in which the failing T-tubule identified with the RAMP microscope is then imaged with electron microscopy. The second approach exploits the diffusion of molecules within TATS to gain insights into the local TATS structure, even without a thorough reconstruction of the tubular network. Although challenging, the local electrical failure occurring at single T-tubules is a fundamental question that needs to be addressed and could provide novel insights in cardiac pathophysiology.
منابع مشابه
Action potential propagation in transverse-axial tubular system is impaired in heart failure.
The plasma membrane of cardiac myocytes presents complex invaginations known as the transverse-axial tubular system (TATS). Despite TATS's crucial role in excitation-contraction coupling and morphological alterations found in pathological settings, TATS's electrical activity has never been directly investigated in remodeled tubular networks. Here we develop an ultrafast random access multiphoto...
متن کاملA quantitative model of the cardiac ventricular cell incorporating the transverse-axial tubular system.
The role of the transverse-axial tubular system (TATS) in electrical activity of cardiac cells has not been investigated quantitatively. In this study a mathematical model including the TATS and differential distribution of ionic transfer mechanisms in peripheral and tubular membranes was described. A model of ventricular cardiac cell described by Jafri et al. (1998) was adopted and slightly mo...
متن کاملQuantitative assessment of passive electrical properties of the cardiac T-tubular system by FRAP microscopy.
Well-coordinated activation of all cardiomyocytes must occur on every heartbeat. At the cell level, a complex network of sarcolemmal invaginations, called the transverse-axial tubular system (TATS), propagates membrane potential changes to the cell core, ensuring synchronous and uniform excitation-contraction coupling. Although myocardial conduction of excitation has been widely described, the ...
متن کاملModelling the cardiac transverse-axial tubular system.
The transverse-axial tubular system (TATS) of cardiac ventricular myocytes is a complex network of tubules that arises as invaginations of the surface membrane; it appears to form a specialised region of cell membrane that is particularly important for excitation-contraction coupling. However, much remains unknown about the structure and role of the TATS. In this brief review we use experimenta...
متن کاملAxial and Transverse Vibration of SWBNNT System Coupled Pasternak Foundation Under a Moving Nanoparticle Using Timoshenko Beam Theory
In this study, a semi analytical method for transverse and axial vibration of single-walled boron nitride nanotube (SWBNNT) under moving a nanoparticle is presented. The surrounding elastic medium as Pasternak foundation and surface stress effect are included in the formulations of the proposed model. Using Timoshenko beam theory (TBT), Hamilton’s principle and nonlocal piezoelasticity theory, ...
متن کامل